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Three questions (about AI)

• Why am I interested in search,

particularly in intelligent search? 

• Is the study of intelligent search,

a scientific enterprise

an engineering task

an indecipherable quagmire?

• Have I learnt anything, 

that might be worth remembering?
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Three traditional AI assumptions

• Search is the basic process / mechanism of AI.

• Heuristic search is the key to modelling intelligent search.

Intelligent search is necessary to solve NP-complete problems

• Intelligent search is one key to modelling intelligence.



Some challenges

• Evaluating a search algorithm

o Three approaches

1. Worst case complexity

2. Average case performance

3. Suitability / unsuitability for particular problem types / instances

o Are there other approaches?  

• Discriminating intelligent search 

o Newell and Simon‟s approach

 Intelligent search is manifest in Intelligent Problem Solving 

 Specify the characteristics of Intelligent Problem Solving

o Defining intelligent search 

 Is this possible?

• Finding appropriate heuristic methods 

o What differentiates a heuristic method as appropriate for intelligent search?
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Four phases in my search

1. Blocks world planning

2. Large-scale commercial problems

3. Stochastic search

4. Constraint satisfaction problems
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I.  Blocks world planning

• Blocks world planning with limited resources

o Resources

Table positions  - Arms

o Find a plan with

fewest actions / less than n actions

consuming least resources / no more than a fixed amount.

• parcPLAN

o General planning architecture 

o Hybrid algorithm 

Probe backing + CP (forward checking) + arc-consistency + heuristics

• Empirical tests

o Random problem generator varying three parameters

Blocks   - Table positions  - Arms 
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What did I learn from the blocks world? 

• parcPLAN

 Learnt that it solved more test-bed problems faster than

some other planners at that time.

 Learnt how to combine some search techniques 

for the blocks world.

 Learnt nothing that generalizes

beyond the blocks world, except for one thing. 

• Summary
 Don‟t solve most planning problems with parcPLAN.

There is usually a much more efficient special-purpose algorithm.

 This represents the 1st retreat from generality.
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II.  Large-scale commercial problems

• Network optimization problems

o Transport 

 Airlines (fleet planning, scheduling, tail assignment, revenue) 

 Logistics (distribution,  resource allocation – construction, rescue & recovery) 

 Manpower planning 

o Telecommunications

 Layer 3 routing (fast re-routing, BGP routing)

 Bandwidth utilization,

 Quality-of-Service,

8



What did I learn from commercial problems? 

• From CHIP and ILOG
 No “silver bullet”

• From ECLiPSe and ILOG Solver
 “Bite the bullet” 

• From ECLiPSe2  and OPL-CPLEX + ILOG Solver

 Solve complex, multi-dimensional problems with hybrid algorithms, 
Use a combination of SIMPLEX (for linear problems), finite domain techniques, stochastic 

algorithms, etc.

NB.  SIMPLEX (for some linear problems) has exponential worst case complexity,  

where it takes a number of steps exponential in the size of the problem.
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What did I learn from commercial problems? (cont.) 

• From mathematical programming (MP)

 Don‟t search in MP, sometimes.

1. Integer programming (where all the variables are required to be integer) is typically NP-hard.

2. Mixed integer programming (where only some of the variables are required to be integer) is 

also typically NP-hard.

3. Performance profiles of integer and mixed integer programming reveal  certain practical 

disadvantages that are severely limiting  on some occasions.

4. Finite domain reasoning, e.g. over the integers, is perhaps better done in constraint 

programming.

 Don‟t solve optimization problems in constraint programming, sometimes.

e.g. those that can be linearized.

 Use constraint programming for some scheduling problems,

e.g. those that cannot be linearized.
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What did I learn from commercial problems? (cont.)

• From  constraint programming (CP) 

 Don‟t solve optimization problems in constraint programming, sometimes, 

e.g. those that can be linearized.

 Use constraint programming for some scheduling problems, 

e.g. those that cannot be linearized. On search

Some general “advice” on some techniques arising from some problems

• Summary

 A programming “cookbook” for CP + MP

 A folklore

of how and when to apply some combinations of some techniques,

derived from the experience of solving some problems

 An art
without predictable, or even probable, results.

 This represents the 2nd retreat from generality.
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III.  Stochastic search

• Stochastic search paradigms

o Simulated annealing 

o Evolutionary algorithms

o Genetic algorithms

• Two “beliefs” about stochastic search

o Well-suited to optimization problems, 

If there are lots of solutions to explore

o Not so well suited to decision problems,

If there are very few solutions.
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Simulated annealing
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• Basic algorithm structure

a) Neighbourhood operator 

– Transforms one assignment into another

b) Annealing schedule

i. Initial „acceptance probability‟ AP (set very high)

ii. Schedule of increments for reducing AP

iii. Terminating AP

iv. Number of iterations of Neighbourhood-Operation at each increment.

c) Objective function to be optimized

• Challenge for „anytime‟ variant

Find a finite annealing schedule that balances two factors.

i. Gradient of reducing acceptance probability 

ii. Number of iterations of the neighbourhood operation at each increment.

Search behaviour

Fixing the balance determines the search profile.



Another “cookbook”

• On fixing the right balance

o Right balance

i. is specific to the problem (perhaps to the particular instance of the problem)

ii. Is assessed solely on the basis of empirical trials

iii. Is not derivable from a structural analysis of the problem (instance)  since this is largely a black

box.

• On altering search behaviour

a) Allow different annealing schedules for different parts of the search space

b) Bias the search towards certain <variable, value> pairs, depending upon the 

frequency of appearance in earlier iteration.

NB Experiments show that both approaches can improve outcomes considerably.
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What did I learn from stochastic algorithms? 

• Understanding search in simulated annealing

 The study is a “dark art” guided only by generate-and-test. 

a) Improving search is a matter of art, beyond the reach of science.

b) Improving search results yields little insight into search behaviour

• Summary

 Simulated annealing is typical of stochastic search.

 This represents the 3rd retreat from generality.
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IV.  Constraint satisfaction problems (CSPs)

• Three empirical “observations”

i. Under-constrained instances

Often easy to solve, 

because there are lots of solutions.

ii. Over-constrained instances

Sometimes easy to solve, 

if the constraints prune (most) branches early in search.

Sometimes hard to solve, 

if the constraints prune (most) branches only late in search. 

iii. Critically-constrained instances

Typically very hard to solve,

because there are a few solutions but constraints prune (most) branches neither early nor late.
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Conjectures and beliefs 

• Three conjectures

a) Critically-constrained problems typically coincide with a peak in search effort

b) That peak typically coincides with a certain clause density (clause / variable ratio)

c) That particular clause density can be identified statistically.

• Three beliefs

d) Nonsystematic search algorithms are,

1. poorly suited to large-scale problems with few solutions,

2. either inefficient or inapplicable to unsolvable problems.

e) Complete, backtrack-search techniques are effective for,

1. tightly constrained problems with few solutions, 

2. over-constrained problems (no solutions).

f) Incomplete, non-systematic techniques are effective for,

large-scale problems with many solutions.
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SAT problems and a local search algorithm

• 3-SAT problems

o SAT problems in, 

o Conjunctive normal form

o Each clause with exactly 3 variables

• learn-SAT: A 3-SAT algorithm

o A complete, nonsystematic search

 Learning no-goods

 Learning-by-merging

o Heuristics

 Forward checking

 Binary ordering

 3rd order learning 
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3-SAT case study: Empirical tests and results

• Test problems – 3 types
i. Problems with exactly one solution (AIM problems)

ii. Unsolvable problems

iii. Large-scale problems with many solutions 

• Performance measure
o Constraint density (clause / variable ratio)  & number of constraint checks

• Test results – learn-SAT
i. Outperforms the best backtrack-search algorithms at lower clause densities, 

Otherwise “broadly” approximates them (e.g. Tableau {CBJ + 3rd order learning}) 

ii. Outperforms the best backtrack-search algorithms at lower clause densities

Otherwise “broadly” approximates them (e.g. relsat) 

iii. Approximates the best local search algorithms at lower clause densities,

Otherwise grossly underperforms them (e.g. GSAT, weight)
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What did I learn from the case study?

• Three beliefs recalled

d) Nonsystematic search algorithms are,

1. poorly suited to large-scale problems with few solutions

2. either inefficient or inapplicable to unsolvable problems.

e) Complete, backtrack-search techniques are effective for,

1. tightly constrained problems with few solutions, 

2. over-constrained problems (no solutions).

f) Incomplete, non-systematic techniques are effective for,

o large-scale problems with many solutions.

• learn-SAT results show,

 (d1) and (d2) are both false.

 (e1) and (e2) are not true at all clause densities, or even typically so.

 (f) is relatively true.
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What did I learn from the case study? (cont.)

• Three conjectures recalled

a) Critically-constrained problems typically coincide with a peak in search effort

b) That peak typically coincides with a certain clause density (clause / variable ratio)

c) That particular clause density can be identified statistically.

• learn-SAT results show,

 (a) is false. 

Critically-constrained problems do not always coincide with a peak in search effort.

 (b) is false.

Peak search effort does not always coincide with a particular clause density (clause / variable 

ratio).

 (c) is false.

That reason for peak search cannot be identified statistically.
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What did I learn from the case study? (cont.)

• On deriving insight into search

o This depends essentially upon knowing at least 3 things.

1. Some parameters of the problem 

e.g. constraint density, constraint width

2. Something about the solution space  

e. g. number of solutions, distribution of solutions

3. Some measure that connects (1) and (2) to performance, 

e.g. constraint checks

• Summary

o On the prospects of understanding search  

 For most problems very little is known where (1) – (3) are satisfied. 

 This represents a challenge, not a retreat.
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Why do I care about the challenge?

• AI problems
Are mostly NP-Complete

Require search to solve.

• Understanding search
Remains a “dark hole” in AI research (as far as I can see).

• If AI is just engineering,
I can live in the darkness, as long as the algorithms work to some specification.

• If AI is to be more than engineering, 
The darkness must be lifted.
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Why do I care about the challenge? (cont.)

• AI cannot be a science, 
If the study of search is a “dark hole”.

• The study of search can yield insight into intelligence,
Only if it can be the subject of scientific enquiry. 

• Scientific enquiry does not consist in,
Folklore

Programming cookbooks

Anecdotes

• Questions

i. Is search relevant to cognitive science?

ii. Is learning a more relevant and promising horizon for cognitive science?

24


