Part D: Statistical Relational Learning for Robotics
Outline

- Rough idea of statistical relational learning
- Learning probabilistic rules \rightarrow model-based relational RL
- Exploration
- Conclusions
vector space
great advances
mature ML/RL methods

hybrid, combinatorial space
great challenges
relational learning & inference
If a robot starts manipulating objects, the whole environment becomes “subject to robotics” – methods for planning, control, estimation, etc need to extend external DoFs, not only robot’s internal DoFs.
Objects & Relations

- World is composed of objects
 - objects have (changeable) properties & relations
 - the state s is given by the set of all properties/relations of all objects

- Example: We have a symbolic property big and relation on
 - In a world with 2 objects A, B, the state s is composed of 3 variables
 \[s = (\text{big}(A), \text{big}(B), \text{on}(A, B)) \]
 - In a world with 3 objects A, B, C, s is composed of 6 variables:
 \[s = (\text{big}(A), \text{big}(B), \text{big}(C), \text{on}(A, B), \text{on}(B, C), \text{on}(A, C)) \]
 - In a world with n objects we have $n + n(n - 1)/2$ state variables

 The size of the state space is exponential in # objects
Relational models

- Relational models...
 - generalize data seen in one world (with objects \(A, B, C, \ldots \)) to another world (with objects \(D, E, \ldots \))
 - make predictions based only on the properties/relations of objects, *not their identity*
 - thereby imply a very strong type of generalization/prior which allows to efficient learn in the exponentially large space

Object Abstraction Assumption: *The world is made up of objects, and the effects of actions on these objects generally depend on their attributes rather than their identities.*

Pasula, Zettlemoyer & Kaelbling (ICAPS 2004)
Example: Bayesian Logic Programs

- In logic programming,
 \[
 \text{stable}(A) :\neg \ \text{on}(A,B), \ \text{big}(B)
 \]
 means "For all A, B if B is big and A on B then A is stable"
Example: Bayesian Logic Programs

- In logic programming,
 \[\text{stable}(A) :- \text{on}(A,B), \text{big}(B) \]
 means “For all \(A, B \) if \(B \) is big and \(A \) on \(B \) then \(A \) is stable”

- In Bayesian Logic Programs [Kersting and de Raedt]
 \[\text{stable}(A) :- \text{on}(A,B), \text{big}(B) \]
 means “For all \(A, B \), if \(\text{big}(B) \) and \(\text{on}(A, B) \) are random variables, then \(\text{stable}(A) \) is a random variable”
 Associated with this rule is a conditional probability table (CPT) that specifies the probability distribution over \(\text{stable}(A) \) for any possible values of \(\text{on}(A, B) \) and \(\text{big}(B) \)

- We have a knowledge representation that allows us to construct a grounded Bayesian Network for specific worlds (sets of objects); this BN will have many shared parameters.
• There exist many many more relational modelling formalisms.

 Markov Logic Networks, Probabilistic Relational Models, Relational Markov Networks, Relational Probability Trees, Stochastic Logic Programming, ...

See ECML/PKDD 2007 tutorial by Lise Getoor!

There exist many many more relational modelling formalisms.

- Markov Logic Networks, Probabilistic Relational Models, Relational Markov Networks,
 Relational Probability Trees, Stochastic Logic Programming, ...

See ECML/PKDD 2007 tutorial by Lise Getoor!

- “Probabilistic learning & inference on 1st order logic representations”
 - very strong generalization across objects
 - in my view: the currently only way to express & learn uncertain
 knowledge about environments with objects & properties/relations

SRL + Robotics = perfect match!
Outline

- Rough idea of statistical relational learning
- Learning probabilistic rules \rightarrow model-based relational RL
- Exploration
- Conclusions
Model-based RL in the relational case

\[D = \{ \]

\begin{align*}
\text{grab(c)} : & \quad \text{box(a) box(b) ball(c) table(d) on(a,b) on(b,d) on(c,d) inhand(nil) ...} \\
& \quad \rightarrow \text{box(a) box(b) ball(c) table(d) on(a,b) on(b,d) \neg on(c,d) inhand(c) ...} \\
\text{puton(a)} : & \quad \text{box(a) box(b) ball(c) table(d) on(a,b) on(b,d) \neg on(c,d) inhand(c) ...} \\
& \quad \rightarrow \text{box(a) box(b) ball(c) table(d) on(a,b) on(b,d) on(c,a) inhand(nil) ...} \\
\text{puton(b)} : & \quad \text{box(a) box(b) ball(c) table(d) on(a,b) on(b,d) on(c,a) inhand(nil) ...} \\
& \quad \rightarrow \text{box(a) box(b) ball(c) table(d) on(a,b) on(b,d) on(c,a) inhand(nil) ...} \\
\text{grab(b)} : & \quad \text{box(a) box(b) ball(c) table(d) on(a,b) on(b,d) on(c,a) inhand(nil) ...} \\
& \quad \rightarrow \text{box(a) box(b) ball(c) table(d) on(a,d) \neg on(b,d) on(c,d) inhand(b) ...} \\
& \quad \vdots \\
\} \\

\bullet \text{ How can we learn a predictive model } P(x' \mid u, x) \text{ for this data?} \\
\text{With } n = 20 \text{ objects, state space is } > 2^{n^2} \approx 10^{120}
Learning probabilistic rules

Pasula, Zettlemoyer & Kaelbling: Learning probabilistic relational planning rules (ICAPS 2004)

• **Compress** this data into probabilistic relational rules:

\[
\text{grab}(X) : \ on(X,Y), \ block(Y), \ table(Z)
\]

\[
\rightarrow \begin{cases}
0.7 &: \ inhand(X), \ \neg on(X,Y) \\
0.2 &: \ on(X,Z), \ \neg on(X,Y) \\
0.1 &: \ \text{noise}
\end{cases}
\]

• Find a rule set that maximizes *(likelihood - description length)*
Role of uncertainty in learning these rules

- Introducing uncertainty in the rules not only allows us to model stochastic worlds, it enables to compress/regularize and thereby learn strongly generalizing models!

- A core problem with deterministic AI is learning deterministic models.
Role of uncertainty in learning these rules

⇒ uncertainty ↔ regularization ↔ compression & abstraction

- Introducing uncertainty in the rules not only allows us to model stochastic worlds, it enables to compress/regularize and thereby learn strongly generalizing models!

uncertainty enables learning!
Role of uncertainty in learning these rules

⇒ uncertainty ↔ regularization ↔ compression & abstraction

• Introducing uncertainty in the rules not only allows us to model stochastic worlds, it enables to compress/regularize and thereby learn strongly generalizing models!

uncertainty enables learning!

• A core problem with deterministic AI is learning deterministic models
Planning as inference in relational domains

- Once the model is learnt, using it (planning) is hard

- SST & UCT do not scale with # objects

→ Use Planning-as-Inference:

\[\text{model depending on: situation relevance} \]

one representation good for learning, another good for planning

(Lang & Toussaint, JAIR 2010)
Planning as inference in relational domains

(we’re using factored frontier for approx. inference)

→ Advances in **Lifted Inference** will translate to better robot manipulation planning.
Application

Random exploration:

Real-world:

Planning:

Online explore-exploit:

Lang & Toussaint: Planning with Noisy Probabilistic Relational Rules (JAIR 2010)
Toussaint et al: Integrated motor control, planning, grasping and high-level reasoning in a blocks world using probabilistic inference (ICRA 2010)
Lang, Toussaint & Kersting: Exploration in Relational Worlds (ECML 2010)
Outline

- Rough idea of statistical relational learning
- Learning probabilistic rules → model-based relational RL
- Exploration
- Conclusions
Relational Exploration

• The state space is inherently exponential in the # objects. How could we realize strategies like E^3 or R-max in relational domains?

"smoothed empirical density"
Relational Exploration

- The state space is inherently exponential in the # objects. How could we realize strategies like E^3 or R-max in relational domains?

- Key insight:

 strong generalization of model

 \[\iff \]

 strong implication on what is considered novel is explored

For instance, if you’ve seen a red, green and yellow ball rolling, will you explore whether the blue ball also rolls? Or rather explore something totally different, like dropping a blue box?
Relational Exploration

- Transfer *Explicit Explore or Exploit* (E^3) to Relational Domains

- Representations to formulate an “empirical distribution” (non-novelty)

\[
\begin{align*}
\text{propositional} & \quad P(s) \propto c_D(s) \\
\text{distance based} & \quad P_d(s) \propto \exp\left\{ - \min_{(s_e, a_e, s_e') \in D} d(s, s_e)^2 \right\} \\
\text{predicate-based} & \quad P_p(s) \propto c_p(s) \ I(s \models p) + c_{\neg p}(s) \ I(s \models \neg p) \\
\text{context-based} & \quad P_\phi(s) \propto \sum_{\phi \in \Phi} c_D(\phi) \ I(\exists \sigma : s \models \sigma(\phi)) \\
\text{ (contexts} & \leftrightarrow \text{ set of LHSs of rules) }
\end{align*}
\]
Application

Online Relational explore-exploit:

Lang, Toussaint & Kersting: Exploration in Relational Worlds (ECML 2010)
Conclusions

vector space
great advances
mature ML/RL methods

hybrid, combinatorial space
great challenges
relational learning & inference
Conclusions

- Statistical Relational Learning addresses only one aspect of such a prior: objects. There is much more:

 static:
 - 3D Geometry
 - Kinematics (rigid b., DoFs)
 - Controllability

 dynamic:
 - things don’t float in the air
 - small things on top of large
 - implausible forces

 semantic:
 - a car in a kitchen is unlikely

- Statistical Relational Learning addresses only one aspect of such a prior: objects. There is much more:

 static:
 - 3D Geometry
 - Kinematics (rigid b., DoFs)
 - Controllability

 dynamic:
 - things don’t float in the air
 - small things on top of large
 - implausible forces

 semantic:
 - a car in a kitchen is unlikely
Relational Learning in Robotics

- A popular science article:

 I, algorithm: A new dawn for artificial intelligence
 (Anil Ananthaswamy, NewScientist, January 2011)

 Talks of “probabilistic programming, which combines the logical underpinnings of the old AI with the power of statistics and probability.” Cites Stuart Russel as “It’s a natural unification of two of the most powerful theories that have been developed to understand the world and reason about it.” and Josh Tenenbaum as “It’s definitely spring”.

20/23
Relational Learning in Robotics

• A popular science article:

 I, algorithm: A new dawn for artificial intelligence

 (Anil Ananthaswamy, NewScientist, January 2011)

Talks of “probabilistic programming, which combines the logical underpinnings of the old AI with the power of statistics and probability.” Cites Stuart Russel as “It’s a natural unification of two of the most powerful theories that have been developed to understand the world and reason about it.” and Josh Tenenbaum as “It’s definitely spring”.

• My impression: Exactly these kinds of developments give new hope for Robots to explore, learn and plan in our natural world, composed of objects.
Kaelbling & Tomás Lozano-Pérez: Hierarchical Task and Motion Planning in the Now (ICRA 2011)
Kaelbling & Tomás Lozano-Pérez: Hierarchical Task and Motion Planning in the Now (ICRA 2011)
thanks for your attention!