RLSC Homework

● Kinematics recap.
● PCA
● Baxter robot
● Example code
Kinematics - notation

\(q \in \mathbb{R}^n \)
vector of joint angles (robot configuration)

\(\dot{q} \in \mathbb{R}^n \)
vector of joint angular velocities

\(\delta q \in \mathbb{R}^n \)
small step in joint angles

\(y \in \mathbb{R}^d \)
some “endeffector(s) feature(s)”
e.g. position \(\in \mathbb{R}^3 \) or vector \(\in \mathbb{R}^3 \)

\(\phi : q \mapsto y \)
kinematic map

\(J(q) = \frac{\partial \phi}{\partial q} \in \mathbb{R}^{d \times n} \)
Jacobian

\(\|v\|_W^2 = v^\top W v \)
squared norm of \(v \) w.r.t. metric \(W \)
Kinematic Structure

- Provided through KDL
Kinematic Map and Jacobian

For any joint angle vector \(q \in \mathbb{R}^n \) we can compute \(T_{W \rightarrow eff}(q) \) by *forward chaining* of transformations.

\(T_{W \rightarrow eff}(q) \) gives us the *pose* of the end-effector

\[
\phi_{pos}(q) = T_{W \rightarrow eff}(q)\cdot \text{translation} \in \mathbb{R}^3
\]

Given the kinematic map \(y = \phi(q) \), what is the Jacobian \(J(q) = \frac{\partial}{\partial q} \phi(q) \)?

\[
J(q) = \frac{\partial}{\partial q} \phi(q) = \begin{pmatrix}
\frac{\partial \phi_1(q)}{\partial q_1} & \frac{\partial \phi_1(q)}{\partial q_2} & \cdots & \frac{\partial \phi_1(q)}{\partial q_n} \\
\frac{\partial \phi_2(q)}{\partial q_1} & \frac{\partial \phi_2(q)}{\partial q_2} & \cdots & \frac{\partial \phi_2(q)}{\partial q_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \phi_d(q)}{\partial q_1} & \frac{\partial \phi_d(q)}{\partial q_2} & \cdots & \frac{\partial \phi_d(q)}{\partial q_n}
\end{pmatrix}
\]
IK with null space resolution

- Cost to optimize:
 \[f(q_{t+1}) = \|q_{t+1} - q_t\|^2_W + \|\phi(q_{t+1}) - y^*\|^2_C \]

- Augmentation for null-space resolution:
 \[\|q_{t+1} - q_t - h\|^2_W \]

- Resulting optimal step:
 \[\delta q = J^\# \delta y + (I - J^\# J) h \]

- Where:
 \[J^\# = (J^T C J + W)^{-1} J^T C = W^{-1} J^T (JW^{-1} J^T + C^{-1})^{-1} \]

- \(h \) is the null space motion component
IK algorithm

- **Input:** starting state q_0, desired y^*, forward map $\phi(q)$, Jacobian $J(q)$, weighting W, regularization C, comfortable pose q_{comf}

- **Output:** final pose q^*

- $q = q_0$

- $q_{\text{old}} = q + \epsilon$

- while $q - q_{\text{old}} > \epsilon$
 - $y = \phi(q)$
 - $J = J(q)$
 - $q_{\text{old}} = q$
 - $q = q + J^\#(y^* - y) + (I - J^\#J)(q_{\text{comf}} - q)$
Principal Component Analysis

- The kinematic map is highly non-linear
 \[\phi_{pos}(q) = T_{W \rightarrow eff}(q).\text{translation} \in \mathbb{R}^3 \]

- If the task is linear, it can still be well represented using the principal components

- Example: The joint space pose samples of an end-effector moving on a surface have 2 principal components
 (the x,y axis of the plane)
Baxter robot

- 2x 7DOF arm
- Interchangeable grippers
- Fixed base
- Position control of all joints
- RGB camera
- Sonar array
Baxter Tools API

● Provides:
 – Simulator control (start, stop, advance)
 – Robot control (set joint angles)
 – Kinematics (FK and Jacobian)
 – Retrieve target positions

● Eigen library
 – Linear algebra tools (matrix and vector operations, transposes, inverse, ...)

Baxter Tools API

- Example code walk-through
- Q&A