Automata on Infinite Trees

Wolfgang Thomas

Edinburgh, October 2014
MSO-Logic over the Infinite Binary Tree
The Model T_2

The structure of the infinite binary tree is

$$T_2 = (\{0, 1\}^*, S_0, S_1, \varepsilon)$$

where S_i is the i-th successor function:

$$S_0(u) = u0, \quad S_1(u) = u1$$

The monadic second-order theory (short: the monadic theory) of the infinite binary tree, denoted by $\text{MTh}_2(T_2)$

is the set of MSO-sentences true in T_2.

A Σ-labelled binary tree is presented as $T : \{0, 1\}^* \rightarrow \Sigma$.

Wolfgang Thomas
Example Formulas

Definition of $x \preceq y$ (“node x is prefix of node y”):

$\varphi^*_s(x, y)$ with $\varphi_s(z, z') := z0 = z' \lor z1 = z'$

$$\forall X((X(y) \land \forall z(X(z0) \rightarrow X(z)) \land \forall z(X(z1) \rightarrow X(z))) \rightarrow X(x))$$

Chain(X) (“X is linearly ordered by \preceq”):

$$\forall x \forall y((X(x) \land X(y)) \rightarrow (x \preceq y \lor y \preceq x))$$

Path(X) (“X is a path, i.e. a maximal chain”):

$$\text{Chain}(X) \land \neg \exists Y(X \subseteq Y \land X \neq Y \land \text{Chain}(Y))$$

$X \subseteq Y$: $\forall z(X(z) \rightarrow Y(z))$

$X = Y$: $\forall z(X(z) \leftrightarrow Y(z))$
Further Formulas

\[x < y \quad ("x\ is\ lexicographically\ before\ y"):\]
\[\exists z (z0 \leq x \land z1 \leq y) \lor (x \leq y \land x \neq y) \]

Finite(\(X\)):

“each subset \(Y\) of \(X\) has a minimal and a maximal element w.r.t. <”

\[\forall Y ((Y \subseteq X \land Y \neq \emptyset) \rightarrow ((\exists y "y is \(<\)-minimal in \(Y") \land \exists y "y is \(<\)-maximal in \(Y"))) \]
A Labelled Tree

```
          0
         / \\/ \\/
        0   1
       / \\/ \\/
      0   1 0 1 0
   (\  |   |  |  |)
   0 1 0 1 ...
```
The set of $\{0, 1\}$-labelled trees having a path with infinitely many occurrences of label 1.

The set of $\{0, 1\}$-labelled trees with only finitely many labels 1.

The set of trees with label 1 on precisely three infinite paths
Tree Automata
Transition of a Tree Automaton

\[(q, a, q', q'') \]
A Run
Format of Tree Automata

\[A = (Q, \Sigma, q_0, \Delta, \text{Acc}) \] where

\[\Delta \subseteq Q \times \Sigma \times Q \times Q \]

A transition \((q, a, q_1, q_2)\) allows the automaton in state \(q\) at an \(a\)-labelled node \(u\) to proceed to states \(q_1, q_2\) at the two successor nodes \(u_0, u_1\)

A Büchi / Muller / parity tree automaton

\[A = (Q, \Sigma, q_0, \Delta, F/F/c) \] accepts the tree \(t\)

if there exists a run \(\varphi\) of \(A\) on \(t\) such that on each path of \(\varphi\) the acceptance condition is satisfied.
Büchi automata, Muller automata, and parity tree automata provide different versions of quantifier elimination:

from Σ^1_n to Σ^1_1, and then to $\text{Bool}(\Pi^0_2)$.

Tree automata provide a less radical way of quantifier elimination than Büchi automata:

An MSO-formula $\phi(X_1, \ldots, X_n)$ can be transformed into a formula with two second-order quantifiers:

“There is a run on the tree given by X_1, \ldots, X_n such that on each path γ the acceptance condition is satisfied.”

In logical terminology this is a Σ^1_2-condition.
Example

\[T_1 = \{ t \in T^\omega_{\{0,1\}} \mid \text{exists path through } t \text{ with infinitely many } 1 \} \]

recognized by a Büchi tree automaton:

Guess an appropriate path and on it check that infinitely often 1 occurs by visiting in the next step a final state.
Example

A parity tree automaton recognising

\[T_2 = \{ t \in T_{\{0,1\}}^\omega \mid \text{each path through } t \text{ has only finitely many } 1 \} \]

Use \(q_0, q_1 \) to signal input letters 0, 1 respectively.

Define \(c(q_0) = 0, \ c(q_1) = 1 \)

The maximal color occurring infinitely often on a path of the run is even (i.e., equal to 0) iff the letter 1 occurs only finitely often on the path.

This tree language is NOT recognizable by a Büchi tree automaton!
Rabin’s Tree Theorem
Rabin’s Tree Theorem

A tree language over an alphabet \(\{0, 1\}^n \) is MSO-definable iff it is recognizable by a parity tree automaton.

The MSO-theory of \(T_2 \) is decidable.

Everything works as before for Büchi automata, but complementation and emptiness test are now more difficult.
Complementation via Games

- Characterize “A accepts t”: In a two-player game $\Gamma(A, t)$ between “Automaton” and “Pathfinder”, “Automaton” has a winning strategy.

- Non-acceptance of t by A means non-existence of a winning strategy for Automaton in the game $\Gamma(A, t)$.

- Apply determinacy: There is a winning strategy for Pathfinder.

- Convert this strategy into an automaton strategy in a different game $\Gamma(B, t)$.

- This gives the desired complement automaton B.
A play of the game $\Gamma(\mathcal{A}, t)$
First Automaton picks a transition from Δ which can serve to start a run at the root of the input tree.

Then Pathfinder decides on a direction (left or right) to proceed to a son of the root.

Then Automaton chooses again a transition for this node (compatible with the first transition and the input tree).

Then Pathfinder reacts again by branching left or right from the momentary node, etc.

Play gives a sequence of transitions (and hence a state sequence from Q), built up along a path chosen by Pathfinder.

Automaton wins the play iff the constructed state sequence satisfies the parity condition.
Game Positions

Positions of Automaton are the triples

\[(tree \ node \ w, tree \ label \ t(w), state \ q \ at \ w)\]

By choice of a transition \(\tau\) of the form \((q, t(w), q', q'')\), a position of Pathfinder is reached.

Positions of Pathfinder are the triples

\[(tree \ node \ w, tree \ label \ t(w), transition \ \tau \ at \ w)\]

Run Lemma:

The tree automaton \(\mathcal{A}\) accepts the input tree \(t\) iff in the parity game \(\Gamma(\mathcal{A}, t)\) there is a positional winning strategy for player Automaton from the initial position \((\varepsilon, t(\varepsilon), q_0)\)
Recall Results on Parity Games

1. Parity games are positionally determined: From a given start position one of the two players has a winning strategy, which moreover is positional.

2. The set of positions of a parity game graph from which a given player wins is MSO-definable (in the MSO-language for game graphs).

3. For parity games over finite game graphs one can decide for any position who wins from this position.
Complementation (Step 1)

Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, c)$ be a parity tree automaton.

We find a parity tree automaton \mathcal{B} accepting precisely the trees $t \in T_\Sigma^\omega$ which are not accepted by \mathcal{A}.

Start with the following equivalences: For any tree t,

\mathcal{A} does not accept t

iff (by Run Lemma)

Automaton has no winning strategy from the initial position $(\varepsilon, t(\varepsilon), q_0)$ in the parity game $\Gamma_{\mathcal{A}, t}$

iff (by Determinacy Theorem)

(*) in $\Gamma(\mathcal{A}, t)$, Pathfinder has a positional winning strategy from $(\varepsilon, t(\varepsilon), q_0)$

Wolfgang Thomas
Reformulate (*) in the form

“B accepts t” for some tree automaton B

Pathfinder’s strategy is a function f from the set

$\{0, 1\}^* \times \Sigma \times \Delta$ of his vertices into the set $\{0, 1\}$ of directions.

Decompose this function into a family

$$(f_w : \Sigma \times \Delta \rightarrow \{0, 1\})$$

of “local instructions”, parameterised by $w \in \{0, 1\}^*$

The set I of possible local instructions $i : \Sigma \times \Delta \rightarrow \{0, 1\}$ is finite,

Thus Pathfinder’s winning strategy can be coded by the I-labelled tree s with $s(w) = f_w$
Step 3

Let $s^\wedge t$ be the corresponding $(I \times \Sigma)$-labelled tree with

$$s^\wedge t(w) = (s(w), t(w)) \text{ for } w \in \{0, 1\}^*$$

Now (*) is equivalent to the following:

There is an I-labelled tree s such that for all sequences $\tau_0 \tau_1 \ldots$ of transitions chosen by Automaton and for all (in fact for the unique) $\pi \in \{0, 1\}^\omega$ determined by $\tau_0 \tau_1 \ldots$ via the strategy coded by s, the generated state sequence violates the parity condition.
A reformulation of this yields:

(1) There is an I-labelled tree s such that s^t satisfies:

(2) for all $\pi \in \{0, 1\}^\omega$

(3) for all $\tau_0 \tau_1 \ldots \in \Delta^\omega$

(4) if the sequence $s|\pi$ of local instructions applied to the sequence of tree labels $t|\pi$ and to the transition sequence $\tau_0 \tau_1 \ldots$ indeed produces the path π, then the state sequence determined by $\tau_0 \tau_1 \ldots$ violates the parity condition.

Condition (4) describes a property of ω-words over $I \times \Sigma \times \Delta \times \{0, 1\}$

which obviously can be checked by a sequential parity automaton \mathcal{M}_4, independently of t.
(1) There is an I-labelled tree s such that $s \wedge t$ satisfies:

(2) for all $\pi \in \{0, 1\}^\omega$

(3) for all $\tau_0 \tau_1 \ldots \in \Delta^\omega$

(4) if the sequence $s|\pi$ of local instructions applied to the sequence of tree labels $t|\pi$ and to the transition sequence $\tau_0 \tau_1 \ldots$ indeed produces the path π, then the state sequence determined by $\tau_0 \tau_1 \ldots$ violates the parity condition.

Condition (3) describes a property of ω-words over $I \times \Sigma \times \{0, 1\}$, which results from (4) by a universal quantification (equivalently, by a negation, a projection, and another negation).

(3) is checked by a sequential and deterministic Muller automaton \mathcal{M}_3
(1) There is an I-labelled tree s such that $s^\wedge t$ satisfies:
(2) for all $\pi \in \{0, 1\}^\omega$
(3) for all $\tau_0 \tau_1 \ldots \in \Delta^\omega$
(4) if the sequence $s|\pi$ of local instructions applied to the sequence of tree labels $t|\pi$ and to the transition sequence $\tau_0 \tau_1 \ldots$ indeed produces the path π, then the state sequence determined by $\tau_0 \tau_1 \ldots$ violates the parity condition.

Condition (2) defines a property of $(I \times \Sigma)$-labelled trees, which can be checked by a deterministic Muller tree automaton \mathcal{M}_2, simulating \mathcal{M}_3 along each path.

(Note that, by determinism of \mathcal{M}_3, the \mathcal{M}_3-runs on different paths of an $(I \times \Sigma)$-labelled tree agree on the respective common prefix and hence can be merged into one run of \mathcal{M}_2)
(1) There is an I-labelled tree s such that $s \wedge t$ satisfies:

(2) for all $\pi \in \{0, 1\}^\omega$

(3) for all $\tau_0 \tau_1 \ldots \in \Delta^\omega$

(4) if the sequence $s|\pi$ of local instructions applied to the sequence of tree labels $t|\pi$ and to the transition sequence $\tau_0 \tau_1 \ldots$ indeed produces the path π, then the state sequence determined by $\tau_0 \tau_1 \ldots$ violates the parity condition.

Applying nondeterminism, a Muller tree automaton B can be built which checks Condition (1), by guessing a tree s on the input tree t and working on $s \wedge t$ like M_2

B does not depend on the tree t under consideration.

Thus B accepts precisely those trees which A does not accept, as was to be shown.
Intermediate Summary

We have completed the translation from MSO-logic to tree automata:

An MSO-definable tree language over an alphabet \(\{0, 1\}^n \) is recognizable by a parity tree automaton.

We now show

The MSO-theory of \(T_2 \) is decidable.

Let \(\varphi \) be an MSO-sentence.

Use the above result for \(n = 0 \) and obtain a parity tree automaton \(\mathcal{A}_\varphi \) with unlabelled transitions \((q, q', q'') \).

We have to check whether \(\mathcal{A}_\varphi \) has a successful run.
The Input-free Case

An input-free parity tree automaton $\mathcal{A} = (Q, q_0, \Delta, c)$ with $\Delta \subseteq Q \times Q \times Q$ defines a simpler game $\Gamma(\mathcal{A})$:

Automaton has positions in in Q and chooses transitions from $Q \times Q \times Q$

Pathfinder has positions in Δ and chooses directions.

The corresponding game graph is finite!

Run Lemma (input-free case): \mathcal{A} admits at least one successful run iff Automaton has a winning strategy in $\Gamma(\mathcal{A})$ from position q_0.

The first condition is checked effectively by the 3rd result on parity games.
Regular Trees
Definition

A tree $t \in T_{\Sigma}^\omega$ is called regular if it is “finitely generated” in the following sense:

There is a deterministic finite automaton equipped with output which tells for any given input $w \in \{0, 1\}^*$ which label is at node w (i.e. the value $t(w)$).
Rabin’s Basis Theorem

Recall:

A nonempty regular ω-language contains an ultimately periodic ω-word.

A corresponding result holds for nonempty tree languages which are recognized by parity tree automata.

Rabin’s Basis Theorem

A nonempty tree language recognized by a parity tree automaton contains a regular tree.
Rabin’s Basis Theorem: Proof

Assume $A = (Q, \Sigma, q_0, \Delta, c)$ is a parity tree automaton.

Proceed to an “input-guessing” (and input-free) tree automaton A' with states in $Q \times \Sigma$:

A' guesses an input tree and works on it as A does.

A' may have several initial states.

Then:

The input-free automaton A' admits a successful run iff $T(A) \neq \emptyset$, and a tree in $T(A)$ is extracted from the second components of the run.

Thus a regular tree is generated.
Rabin’s Solution of Church’s Problem
The Tree Setting

Consider moves of Players 1 and 2 in \(\{0, 1\} \).

The players construct a labelled path in \(T_2 \).

A dummy value is associated to the root (say 0).

Player 1 chooses directions.

Player 2 chooses a label at a node reached by Player 1.

When Player 1 has chosen the bit sequence \(w \), Player 2 puts his choice as label at position \(w \).

So a strategy of Player 2 is a \(\{0, 1\} \)-labelling of \(T_2 \).
Defining Winning Strategies in MSO

A play is a sequence “direction-label-direction-label etc.”

The winning condition is a condition on labelled paths through T_2.

If the winning condition definable by an MSO-formula $\phi(X, Y)$, one can reformulate it as an MSO condition on paths through the tree.

Consequence: There is an MSO-formula $\psi(Z)$ expressing:

The tree labelling given by Z defines a winning strategy for Player 2.

 (“For all paths, the sequence Y of directions and the sequence X of Z-labels along Y satisfies $\phi(X, Y)$”)

Wolfgang Thomas
By Rabin’s Tree Theorem, one can decide truth of $\exists Z \psi (Z)$, so can decides whether Player 2 wins the game defined by φ.

In this case, by Rabin’s Basis Theorem a regular tree exists satisfying $\psi (Z)$, which gives a finite-state strategy for Player 2.

The problem of solving sequential games is a satisfiability problem over trees.