LFCS seminar: Noam Zeilberger: Lambda calculus and the four colour theorem
What 


When 
Nov 21, 2017 from 04:00 PM to 05:00 PM 
Where  IF 4.31/4.33 
Add event to calendar 
vCal iCal 
The study of the combinatorics of graphs on surfaces (or "maps") began in the 1960s with the pioneering work of Bill Tutte, who figured out how to count various families of planar maps as the initial steps of a longterm strategy for approaching the Four Colour Problem. Tutte's approach was ultimately sidestepped by the AppelHaken proof of the 4CT, but enumeration of maps remains a very active area of combinatorics, with links to wideranging domains such as algebraic geometry, knot theory, mathematical physics... and, since more recently, lambda calculus! In this talk I will survey some of the combinatorial connections that have been found over recent years between different families of maps and different families of lambda terms, hoping to convey how these deepen the existing ties between logic and geometry, and suggest some fascinating questions for research in both directions.