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From the Armchair ...

A (computational) linguist in 1984
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... to the Observatory

A (computational) linguist in 2010
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Supervised Machine Learning

1. Define coding standard mapping inputs to outputs,
e.g.:

• English word→ stem

• newswire text→ person name spans

• biomedical text→ genes mentioned

2. Collect inputs and code “gold standard” training data

3. Develop and train statistical model using data

4. Apply to unseen inputs
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Coding Bottleneck

• Bottleneck is collecting training corpus

• Commericial data’s expensive (e.g. LDA, ELRA)

• Academic corpora typically restrictively licensed

• Limited to existing corpora

• For new problems, use: self, grad students, temps,
interns, . . .

• Crowdsourcing to the rescue (e.g. Mechanical Turk)
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Case Studies

(Mechanical Turked, but same for “experts”.)
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Amazon’s Mechanical Turk (and its Like)

• “Crowdsourcing” Data Collection

• Provide web forms (or applets) to users

• Users choose tasks to complete

• We can give them a qualifying/training test

• They fill out a form per task and submit

• We pay them through Amazon

• We get the results in a CSV spreadsheet
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Case 1: Named Entities
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Named Entities Worked

• Conveying the coding standard

– official MUC-6 standard dozens of pages

– examples are key

– (maybe a qualifying exam)

• User Interface Problem

– highlighting with mouse too fiddly (see Fitts’ Law)

– one entity type at a time (vs. pulldown menus)

– checkboxes (vs. highlighting spans)
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Discussion: Named Entities
• 190K tokens, 64K capitalized, 4K names

• 10 annotators per token

• 100+ annotators, varying numbers of annotations

• Less than a week at 2 cents/400 tokens (US$95)

• Turkers overall better than LDC data

– Correctly Rejected: Webster’s, Seagram, Du Pont,

Buick-Cadillac, Moon, erstwhile Phineas Foggs

– Incorrectly Accepted: Tass
– Missed Punctuation: J E. ‘‘Buster’’ Brown

• Many Turkers no better than chance
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Case 2: Morphological Stemming
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Morphological Stemming Worked

• Three iterations on coding standard

– simplified task to one stem

• Four iterations on final standard instructions
– added previously confusing examples

• Added qualifying test
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Case 3: Gene Linkage
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Gene Linkage Failed

• Could get Turkers to pass qualifier

• Could not get Turkers to take task even at $1/hit

• Doing coding ourselves (5-10 minutes/HIT)

• How to get Turkers do these complex tasks?

– Low concentration tasks done quickly

– Compatible with studies of why Turkers Turk
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κ Statistics
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κ is “Chance-Adjusted Agreement”

κ(A,E) =
A− E
1− E

• A is agreeement rate

• E is chance agreement rate

• Industry standard

• Attempts to adjust for difficulty of task

• κ above arbitrary threshold considered “good”
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Problems withκ
• κ intrinsically a pairwise measure

• κ only works for subset of shared annotations

• Not used in inference after calculation

– κ doesn’t predict corpus accuracy

– κ doesn’t predict annotator accuracy

• κ reduces to agreement for hard problems

– limE→0 κ(A,E) = A
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Problems withκ (cont)

• κ assumes annotators all have same accuracies

• κ assumes annotators are unbiased

– if biased in same way, κ too high

• κ assumes 0/1 items same value

– common: low prevalence, high negative agreement

• κ typically estimated without variance component

• κ assumes annotations for an item are uncorrelated

– items have correlated errors, κ too high
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Inferring Gold Standards
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Voted Gold Standard

• Turkers vote

• Label with majority category

• Censor if no majority

• This is also NLP standard

• Sometimes adjudicated

– no reason to trust result
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Some Labeled Data

• Seed the data with cases with known labels

• Use known cases to estimate coder accuracy

• Vote with adjustment for accuracy

• Requires relatively large amount of items for

– estimating accuracies well
– liveness for new items

• Gold may not be as pure as requesters think

• Some preference tasks have no “right” answer

– e.g. Dolores Labs’: Bing vs. Google, Facestat, Colors, ...
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Estimate Everything

• Gold standard labels

• Coder accuracies

– sensitivity = TP/(TP+FN) (false negative rate; misses)
– specificity = TN/(TN+FP) (false positive rate; false alarms)

∗ unlke precision, but like κ, uses TN information
– imbalance indicates bias; high values accuracy

• Coding standard difficulty

– average accuracies
– variation among coders

• Item difficulty (important; needs many annotations)
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Benefits of (Bayesian) Estimation

• More accurate than voting with threshold

– largest benefit with few Turkers/item

– evaluated with known “gold standard”

• May include gold standard cases (semi-supervised)

• Full Bayesian posterior inference

– probabilistic “gold standard”

– compatible with probabilistic learning, esp. Bayesian

– use uncertainty for (overdispersed) downstream inference
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Why Task Difficulty for Smoothing?

• What’s your estimate for:

– a baseball player who goes 5 for 20? or 50 for 200?
– a market that goes down 9 out of 10 days?
– a coin that lands heads 3 out of 10 times?
– ...
– an annotator who’s correct for 10 of 10 items?
– an annotator who’s correct in 171 of 219 items?
– . . .

• Hierarchical model inference for accuracy prior

– Smooths estimates for coders with few items
– Supports (multiple) comparisons of accuracies
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Is a 24 Karat Gold Standard Possible?

• Or is it fool’s gold?

• Some items are marginal given coding standard

– ‘erstwhile Phineas Phoggs’ (person?)

– ‘the Moon’ (location?)

– stem of ‘butcher’ (‘butch’?)

• Some items are underspecified in text

– ‘New York’ (org or loc?)

– ‘fragile X’ (gene or disease?)

– ‘p53’ (gene vs. protein vs. family, which species?)

– operon or siRNA transcribed region (gene or ?)
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Traditional Approach to Disagreeement

• Traditional approaches either

– censor disagreements, or

– adjudicate disagreements (revise standard).

• Adjudication may not converge

• But, posterior uncertainty can be modeled
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Statistical Inference Model
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Strawman Binomial Model

• Prevalence π : chance of “positive” outcome

• θ1,j : annotator j’s sensitivity = TP/(TP+FN)

• θ0,j : annotator j’s specificity = TN/(TN+FP)

• Sensitivities, specifities same (θ1,j = θ0,j′ )

• Maximum likelihood estimation (or hierarchical prior)

• Hypothesis easily rejected by by χ2

– look at marginals (e.g. number of all-1 or all-0 annotations)
– overdispersed relative to simple model

28



Beta-Binomial “Random Effects”
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Sampling Notation

Label xk by annotator ik for item jk

π ∼ Beta(1, 1)

ci ∼ Bernoulli(π)

θ0,j ∼ Beta(α0, β0)

θ1,j ∼ Beta(α1, β1)

xk ∼ Bernoulli(cikθ1,jk + (1− cik )(1− θ0,jk ))

• Beta(1, 1) = Uniform(0, 1)

• Maximum Likelihood: α0 = α1 = β0 = β1 = 1
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Hierarchical Component

• Estimate accuracy priors (α, β)

• With diffuse hyperpriors:
α0/(α0 + β0) ∼ Beta(1, 1)

α0 + β0 ∼ Pareto(1.5)

α1/(α1 + β1) ∼ Beta(1, 1)

α1 + β1 ∼ Pareto(1.5)

note: Pareto(x|1.5) ∝ x−2.5

• Infers appropriate smoothing

• Estimates annotator population parameters
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Gibbs Sampling

• Estimates full posterior distribution

– Not just variance, but shape
– Includes dependencies (covariance)

• Samples θ(n) support plug-in predictive inference

p(y′|y) =
∫
p(y′|θ) p(θ|y) dθ ≈ 1

N

∑
n<N

p(y′|θ(n))

• Robust (compared to EM)

• Requires sampler for conditionals (automated in BUGS)
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BUGS Code
model {

pi ~ dbeta(1,1)

for (i in 1:I) {

c[i] ~ dbern(pi)

}

for (j in 1:J) {

theta.0[j] ~ dbeta(alpha.0,beta.0) I(.4,.99)

theta.1[j] ~ dbeta(alpha.1,beta.1) I(.4,.99)

}

for (k in 1:K) {

bern[k] <- c[ii[k]] * theta.1[jj[k]]

+ (1 - c[ii[k]]) * (1 - theta.0[jj[k]])

xx[k] ~ dbern(bern[k])

}

acc.0 ~ dbeta(1,1)

scale.0 ~ dpar(1.5,1) I(1,100)

alpha.0 <- acc.0 * scale.0

beta.0 <- (1-acc.0) * scale.0

acc.1 ~ dbeta(1,1)

scale.1 ~ dpar(1.5,1) I(1,100)

alpha.1 <- acc.1 * scale.1;

beta.1 <- (1-acc.1) * scale.1

}
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Calling BUGS from R
library("R2WinBUGS")

data <- list("I","J","K","xx","ii","jj")

parameters <- c("c", "pi","theta.0","theta.1",

"alpha.0", "beta.0", "acc.0", "scale.0",

"alpha.1", "beta.1", "acc.1", "scale.1")

inits <- function() {

list(pi=runif(1,0.7,0.8),

c=rbinom(I,1,0.5),

acc.0 <- runif(1,0.9,0.9),

scale.0 <- runif(1,5,5),

acc.1 <- runif(1,0.9,0.9),

scale.1 <- runif(1,5,5),

theta.0=runif(J,0.9,0.9),

theta.1=runif(J,0.9,0.9)) }

anno <- bugs(data, inits, parameters,

"c:/carp/devguard/sandbox/hierAnno/trunk/R/bugs/beta-binomial-anno.bug",

n.chains=3, n.iter=500, n.thin=5,

bugs.directory="c:\\WinBUGS\\WinBUGS14")
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Simulated Data
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Simulation Study

• Simulate data (with reasonable model settings)

• Test sampler’s ability to fit

• Parameters

– 20 annotators, 1000 items

– 50% missing annotations at random

– prevalence π = 0.2

– specificity prior (α0, β0) = (40, 8) (83% accurate, medium
var)

– sensitivity prior (α1, β1) = (20, 8) (72% accurate, high var)
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Simulated Sensitivities / Specificities

• Crosshairs at prior mean

• Realistic simulation compared to (estimated) real data
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Prevalence Estimate

• Simulated with π = 0.2

– sample mean ci was 0.21

• Estimand of interest in epidemiology (or sentiment)

Posterior: pi
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Sensitivity / Specificity Estimates
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• Posterior mean and 95% intervals

• Diagonal is perfect estimation

• More uncertainty for sensitivity (more data w. π = 0.2)
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Sens / Spec Hyperprior Estimates

Posterior samples α(n), β(n); cross-hairs at known vals.
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• Note skew to high scale (low variance)

• Estimates match sampled means
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Real Data
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5 Dentists Diagnosing Caries
Dentists Count Dentists Count Dentists Count
00000 1880 10000 22 00001 789
10001 26 00010 43 10010 6
00011 75 10011 14 00100 23
10100 1 00101 63 10101 20
00110 8 10110 2 00111 22
10111 17 01000 188 11000 2
01001 191 11001 20 01010 17
11010 6 01011 67 11011 27
01100 15 11100 3 01101 85
11101 72 01110 8 11110 1
01111 56 11111 100
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Estimands of Interest

• π: Prevalence of caries

• ci: 1 if patient i has caries; 0 otherwise

• θ1,j : Sensitivity of dentist j [ TP/(TP+FN) ]

• θ0,j : Specificity of dentist j [ TN/(TN+FP) ]

– can compute precision [ TP/(TP+FP) ]
– precision + recall (sensitivity) not complete [no FN]

• task difficulty — priors on θ predict new annotators

• item difficulty
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Posteriors for Dentist Accuracies

• In beta-binomial by annotator model

Annotator Specificities

a.0
0.6 0.7 0.8 0.9 1.0
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0

• Posterior density vs. point estimates (e.g. mean)
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Posteriors for Dentistry Data Items
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Accounts for bias, so very different from simple vote!
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Marginal Evaluation

• Common eval in epidemiology

• Models without sensitivity/specificity by annotator un-
derdispersed

Positive Posterior Quantiles
Tests Frequency .025 .5 .975

0 1880 1818 1877 1935
1 1065 1029 1068 1117
2 404 385 408 434
3 247 206 227 248
4 173 175 193 212
5 100 80 93 109
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Textual Entailment Data

• Collected by Snow et al. using Mechnical Turk

• Recreates a popular linguistic data set (Dagan et
al.’s RTE-1)

• Text: Microsoft was established in Italy in 1985.
Hypothesis: Microsoft was established in 1985.

• Binary responses true/false

• “Gold Standard” was pretty bad
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Estimated vs. “Gold” Accuracies
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• Diagonal green at chance (below is adversarial)

• blue lines at estimated prior means

• Circle area is items annotated, center at “gold standard” accu-
racy, lines to estimated accuracy (note pull to prior)
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Annotator Pool Estimates

• Gold-standard balanced (50% prevalence)

• Posterior 95

– Prevalence (.45,.52)

– Specificity (.81,.87)

– Sensitivity (.82,.87)

• Posterior sensitivity 95%

– 39% of annotators no better than chance

– more than 50% of annotations from spammers

– has little effect on inference
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Residual Category Errors
Model Residual Category Error
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• Many residual errors in gold standard, not Turkers
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Modeling Item Difficulty
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Item Difficulty

• Clear that some items easy and some hard

• Assuming all same leads to bad marginal fit

• Hard to estimate even with 10 annotators/item

– Posterior intervals too wide
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Modeling Item Difficulty

• Logistic Item-Response models with shape used in
social sciences (e.g. education and voting)

• Use logistic scale (maps (−∞,∞) to [0, 1])

• αj : annotator j’s bias (ideally 0)

• δj : annotator j’s discriminativeness (ideally∞)

• βi: item i’s “location” plus “difficulty”

• xi ∼ logit−1(δj(αi − βj))
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Modeling Item Difficulty (Cont.)

• Place normal (or other) priors on coefficients,

e.g. βi ∼ Norm(0, σ2), σ2 ∼ Unif(0, 100)

• Priors may be estimated as before; leads to pooling
of item difficulties.

• Need more than 5-10 coders/item for tight posterior
on difficulties

• Model has better χ2 fits, but many more params

• Harder to estimate computationally in BUGS

• Full details and code in paper
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Extensions
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Extending Coding Types

• Multinomial responses (Dirichlet-multinomial)

• Ordinal responses (ordinal logistic model)

• Scalar responses (continuos responses)
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Active Learning

• Choose most useful items to code next

• Typically balancing two criteria

– high uncertainty
– high typicality (how to measure?)

• Can get away with fewer coders/item

• May introduce sampling bias

• Compare supervision for high certainty items

– High precision (for most customers)
– High recall (defense analysts and biologists)

57



Code-a-Little, Learn-a-Little

• Semi-automated coding

• System suggests labels

• Coders correct labels

• Much faster coding

• But may introduce bias

• Hugely helpful in practice
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Probabilistic Training and Testing

• Use probabilistic item posteriors for training

• Use probabilistic item posteriors for testing

• Directly with most probabilistic models (e.g. logistic
regression, multinomial)

• Or, train/test with posterior samples

• Penalizes overconfidence of estimators (in log loss)

• Demonstrated theoretical effectiveness (Smyth et al.)

• Need to test in practice
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Semi-Supervised Models

• Easy to add in supervised cases with Bayesian mod-
els

– Gibbs sampling skips sampling for supervised cases

• May go half way by mixing in “gold standard” anno-
tators

– Fixed high, but non-100% accuracies

– Stronger high accuracy prior
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Multimodal (Mixture) Priors

• Model Mechanical Turk as mixture of spammers and
hammers

• This is what the Mechanical Turk data suggests

• May also model covariance of sensitivity/specificity
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Annotator and Item Random Effects

• May add random effects for annotators

– amount of annotator training

– number of items annotated

– annotator native language

– annotator field of expertise

• Also for Items

– difficulty (already discussed)

– type of item being annotated

– frequency of item in a large corpus
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Jointly Estimate Model and Annotations

• Can train a model with inferred (probabilistic) gold
standard

• Can use trained model like another annotator

• Raykar, Vikas C., Shipeng Yu, Linda H. Zhao, Anna
Jerebko, Charles Florin, Gerardo Hermosillo Valadez,
Luca Bogoni, and Linda Moy. 2009. Supervised
Learning from Multiple Experts: Whom to trust when
everyone lies a bit. In ICML.
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Bayesian κ Estimates

• Calculate expected κ for two annotators

• Calculate expected κ for two new annotators from
pool

• Calcluate confidence/posterior uncertainty of κ

– Could estimate confidence intervals for κ w/o model
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The End

• References

– http://lingpipe-blog.com/

• Contact

– carp@alias-i.com

• R/BUGS (Anon) Subversion Repository

svn co https://aliasi.devguard.com/svn/sandbox/hierAnno
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