## Whence Linguistic Data?

Bob Carpenter
Alias-i, Inc.

## From the Armchair ...



A (computational) linguist in 1984
... to the Observatory


A (computational) linguist in 2010

## Supervised Machine Learning

1. Define coding standard mapping inputs to outputs, e.g.:

- English word $\rightarrow$ stem
- newswire text $\rightarrow$ person name spans
- biomedical text $\rightarrow$ genes mentioned

2. Collect inputs and code "gold standard" training data
3. Develop and train statistical model using data
4. Apply to unseen inputs

## Coding Bottleneck

- Bottleneck is collecting training corpus
- Commericial data's expensive (e.g. LDA, ELRA)
- Academic corpora typically restrictively licensed
- Limited to existing corpora
- For new problems, use: self, grad students, temps, interns, ...
- Crowdsourcing to the rescue (e.g. Mechanical Turk)


## Case Studies

(Mechanical Turked, but same for "experts".)

## Amazon's Mechanical Turk (and its Like)

- "Crowdsourcing" Data Collection
- Provide web forms (or applets) to users
- Users choose tasks to complete
- We can give them a qualifying/training test
- They fill out a form per task and submit
- We pay them through Amazon
- We get the results in a CSV spreadsheet


## Case 1: Named Entities

## (3) Mech Turk: Find Person Names in News Text (5) - Mozilla Firefox

Fle Edit Vew History Eicokmerks Iools Help
C
file:///C:/carp/devguard/sandbox_internal/mechTurk'trunk;/muc6/generated-for-turk/formis|temp.htom
$\sqrt{6} \cdot$ - Bing
Please check the boxes below all person names in the text.
Please do not include titles (e.g. "President"), honorifics (e.g. "Mr."), pronouns (e.g. "She"), or names in companies (e.g. "Charles Schwab Corp."), but please do include punctuation within names (e.g. "T. S. Eliot").
Requires Javascript

| But the | hig | m | g | is | ly | , |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\square$ | $\Gamma$ | $\Gamma$ | $\Gamma$ |  | $\Gamma$ |  |  |  |


have in mind for housing . The Senate Banking Committee

## Named Entities Worked

- Conveying the coding standard
- official MUC-6 standard dozens of pages
- examples are key
- (maybe a qualifying exam)
- User Interface Problem
- highlighting with mouse too fiddly (see Fitts' Law)
- one entity type at a time (vs. pulldown menus)
- checkboxes (vs. highlighting spans)


## Discussion: Named Entities

- 190K tokens, 64 K capitalized, 4 K names
- 10 annotators per token
- 100+ annotators, varying numbers of annotations
- Less than a week at 2 cents/400 tokens (US\$95)
- Turkers overall better than LDC data
- Correctly Rejected: Webster's, Seagram, Du Pont, Buick-Cadillac, Moon, erstwhile Phineas Foggs
- Incorrectly Accepted: Tass
- Missed Punctuation: J E. ''Buster'' Brown
- Many Turkers no better than chance


## Case 2: Morphological Stemming


(1) Remove an affix, if there is one; (2) If there's no affix, insert a space into compound words; (3) Delete misspelled words; (4) Leave everything else as-is.



## Morphological Stemming Worked

- Three iterations on coding standard
- simplified task to one stem
- Four iterations on final standard instructions
- added previously confusing examples

- Added qualifying test


## Case 3: Gene Linkage

## Here is your article:

Biochemical, phenotypic and netrophysiological characterization of a genetic mouse model of RSH/Smith--Lemli--Opitz syndrome

The RSH/Smith--Lemli--Opitz syndrome (RSH/SLOS) is a hmman autosomal recessive syndrome characterized by multiple malformations, a distinct behavioral phenotype with autistic features and mental retardation RSH/SLOS is due to an mbont error of cholesterol biosynthesis caused by mutation of the 3 beta-hydroxysterol Delta(7)-reductase gene. To finther our understanding of the developmental and neurological processes that miderlie the pathophysiology of this disorder, we have developed a mouse model of RSH SLOS by disnuption of the 3 beta-lyydroxysterol Delta(7)-reductase gene. Here we provide the biochemical, phenotypic and neurophysiological characterization of this genetic mouse model. As in human patients, the RSH/SLOS monse has a marked reduction of senm and tissue cholesterol levels and a marked increase of senm and tissue 7-dehydrocholesterol levels. Phenotypic similanities between this monse model and the human syndrome include intra-uterine growth retardation, variable craniofacial anomalies including cleft palate, poor feeding with an uncoordinated suck, hypotonia and decreased movement. Neurophysiological studies showed that although the response of frontal cortex neurons to the neurotrausmitter gamma-amino-n-butyric acid was normal, the response of these same neurons to ghtamate was significantly impaired. This finding provides imsight into potential mechanisms underlying the newrological dysfunction seen in this hman mental retardation syndrome and suggests that this mouse model will allow the testing of potential therapeutic interventions.

Example: Genes: 1024, 5568, 701
Genes: Type your Gene la's he
(If flere ses noze, have at-a.).

Remember, the text highlightin genes may or may not be usef text!!

Suggested Genes: (Official Nane | nickname | EntrezGene ID)
$\left.\begin{array}{llll}\text { Human Genes: } & \begin{array}{l}\text { Mouse Genes: } \\ \text { Plp1: } \mid \text { rsh } \mid 18823\end{array} & \text { Rat Glenes: } & \text { P4943 }\end{array}\right\}$

Please give us feedback This is a test rubl
-How certan are you of your answers?
-Do you undertand what EntrezGene is?
-W ere there any phrases that looked like genes but: ones?
-Were there sany gene mertions where yon could not discussed?
-Did the instructions make sense? Do you have any , - Oher comutertasualestions?

## Gene Linkage Failed

- Could get Turkers to pass qualifier
- Could not get Turkers to take task even at $\$ 1 /$ hit
- Doing coding ourselves (5-10 minutes/HIT)
- How to get Turkers do these complex tasks?
- Low concentration tasks done quickly
- Compatible with studies of why Turkers Turk


## $\kappa$ Statistics

## $\kappa$ is "Chance-Adjusted Agreement"

$$
\kappa(A, E)=\frac{A-E}{1-E}
$$

- $A$ is agreeement rate
- $E$ is chance agreement rate
- Industry standard
- Attempts to adjust for difficulty of task
- $\kappa$ above arbitrary threshold considered "good"


## Problems with $K$

- $\kappa$ intrinsically a pairwise measure
- $\kappa$ only works for subset of shared annotations
- Not used in inference after calculation
- $\kappa$ doesn't predict corpus accuracy
- $\kappa$ doesn't predict annotator accuracy
- $\kappa$ reduces to agreement for hard problems

$$
-\lim _{E \rightarrow 0} \kappa(A, E)=A
$$

## Problems with $K$ (cont)

- $\kappa$ assumes annotators all have same accuracies
- $\kappa$ assumes annotators are unbiased
- if biased in same way, $\kappa$ too high
- $\kappa$ assumes $0 / 1$ items same value
- common: low prevalence, high negative agreement
- $\kappa$ typically estimated without variance component
- $\kappa$ assumes annotations for an item are uncorrelated
- items have correlated errors, $\kappa$ too high


## Inferring Gold Standards

## Voted Gold Standard

- Turkers vote
- Label with majority category
- Censor if no majority
- This is also NLP standard
- Sometimes adjudicated
- no reason to trust result


## Some Labeled Data

- Seed the data with cases with known labels
- Use known cases to estimate coder accuracy
- Vote with adjustment for accuracy
- Requires relatively large amount of items for
- estimating accuracies well
- liveness for new items
- Gold may not be as pure as requesters think
- Some preference tasks have no "right" answer
- e.g. Dolores Labs': Bing vs. Google, Facestat, Colors, ...


## Estimate Everything

- Gold standard labels
- Coder accuracies
- sensitivity $=T P /(T P+F N)$ (false negative rate; misses)
- specificity $=\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})$ (false positive rate; false alarms)
* unlke precision, but like $\kappa$, uses TN information
- imbalance indicates bias; high values accuracy
- Coding standard difficulty
- average accuracies
- variation among coders
- Item difficulty (important; needs many annotations)


## Benefits of (Bayesian) Estimation

- More accurate than voting with threshold
- largest benefit with few Turkers/item
- evaluated with known "gold standard"
- May include gold standard cases (semi-supervised)
- Full Bayesian posterior inference
- probabilistic "gold standard"
- compatible with probabilistic learning, esp. Bayesian
- use uncertainty for (overdispersed) downstream inference


## Why Task Difficulty for Smoothing?

- What's your estimate for:
- a baseball player who goes 5 for 20 ? or 50 for 200 ?
- a market that goes down 9 out of 10 days?
- a coin that lands heads 3 out of 10 times?
- ...
- an annotator who's correct for 10 of 10 items?
- an annotator who's correct in 171 of 219 items?
- ...
- Hierarchical model inference for accuracy prior
- Smooths estimates for coders with few items
- Supports (multiple) comparisons of accuracies


## Is a 24 Karat Gold Standard Possible?

- Or is it fool's gold?
- Some items are marginal given coding standard
- 'erstwhile Phineas Phoggs' (person?)
- 'the Moon' (location?)
- stem of 'butcher' ('butch'?)
- Some items are underspecified in text
- 'New York' (org or loc?)
- 'fragile X' (gene or disease?)
- 'p53' (gene vs. protein vs. family, which species?)
- operon or siRNA transcribed region (gene or ?)


## Traditional Approach to Disagreeement

- Traditional approaches either
- censor disagreements, or
- adjudicate disagreements (revise standard).
- Adjudication may not converge
- But, posterior uncertainty can be modeled


## Statistical Inference Model

## Strawman Binomial Model

- Prevalence $\pi$ : chance of "positive" outcome
- $\theta_{1, j}$ : annotator $j$ 's sensitivity $=$ TP/(TP+FN)
- $\theta_{0, j}$ : annotator $j$ 's specificity $=\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})$
- Sensitivities, specifities same ( $\left.\theta_{1, j}=\theta_{0, j^{\prime}}\right)$
- Maximum likelihood estimation (or hierarchical prior)
- Hypothesis easily rejected by by $\chi^{2}$
- look at marginals (e.g. number of all-1 or all-0 annotations)
- overdispersed relative to simple model


## Beta-Binomial "Random Effects"



## Sampling Notation

Label $x_{k}$ by annotator $i_{k}$ for item $j_{k}$

```
        \(\pi \sim \operatorname{Beta}(1,1)\)
    \(c_{i} \sim \operatorname{Bernoulli}(\pi)\)
\(\theta_{0, j} \sim \operatorname{Beta}\left(\alpha_{0}, \beta_{0}\right)\)
\(\theta_{1, j} \sim \operatorname{Beta}\left(\alpha_{1}, \beta_{1}\right)\)
    \(x_{k} \sim \operatorname{Bernoulli}\left(c_{i_{k}} \theta_{1, j_{k}}+\left(1-c_{i_{k}}\right)\left(1-\theta_{0, j_{k}}\right)\right)\)
```

- $\operatorname{Beta}(1,1)=\operatorname{Uniform}(0,1)$
- Maximum Likelihood: $\alpha_{0}=\alpha_{1}=\beta_{0}=\beta_{1}=1$


## Hierarchical Component

- Estimate accuracy priors $(\alpha, \beta)$
- With diffuse hyperpriors:

$$
\begin{aligned}
\alpha_{0} /\left(\alpha_{0}+\beta_{0}\right) & \sim \operatorname{Beta}(1,1) \\
\alpha_{0}+\beta_{0} & \sim \operatorname{Pareto}(1.5) \\
\alpha_{1} /\left(\alpha_{1}+\beta_{1}\right) & \sim \operatorname{Beta}(1,1) \\
\alpha_{1}+\beta_{1} & \sim \operatorname{Pareto}(1.5)
\end{aligned}
$$

note: Pareto $(x \mid 1.5) \propto x^{-2.5}$

- Infers appropriate smoothing
- Estimates annotator population parameters


## Gibbs Sampling

- Estimates full posterior distribution
- Not just variance, but shape
- Includes dependencies (covariance)
- Samples $\theta^{(n)}$ support plug-in predictive inference

$$
p\left(y^{\prime} \mid y\right)=\int p\left(y^{\prime} \mid \theta\right) p(\theta \mid y) d \theta \approx \frac{1}{N} \sum_{n<N} p\left(y^{\prime} \mid \theta^{(n)}\right)
$$

- Robust (compared to EM)
- Requires sampler for conditionals (automated in BUGS)


## BUGS Code

```
model {
    pi ~ dbeta(1,1)
    for (i in 1:I) {
        c[i] ~ dbern(pi)
    }
    for (j in 1:J) {
        theta.0[j] ~ dbeta(alpha.0,beta.0) I(.4,.99)
        theta.1[j] ~ dbeta(alpha.1,beta.1) I(.4,.99)
    }
    for (k in 1:K) {
        bern[k] <- c[ii[k]] * theta.1[jj[k]]
                    +(1 - c[ii[k]]) * (1 - theta.O[jj[k]])
        xx[k] ~ dbern(bern[k])
    }
    acc.0 ~ dbeta(1,1)
    scale.0 ~ dpar(1.5,1) I (1,100)
    alpha.0 <- acc.0 * scale.0
    beta.0 <- (1-acc.0) * scale.0
    acc.1 ~ dbeta(1,1)
    scale.1 ~ dpar(1.5,1) I (1,100)
    alpha.1 <- acc.1 * scale.1;
    beta.1 <- (1-acc.1) * scale.1
}
```


## Calling BUGS from R

library("R2WinBUGS")

```
data <- list("I","J","K","xx","ii","jj")
```

parameters <- c("c", "pi","theta.0","theta.1",
"alpha.0", "beta.0", "acc.0", "scale.0",
"alpha.1", "beta.1", "acc.1", "scale.1")
inits <- function() \{
list (pi=runif $(1,0.7,0.8)$,
$\mathrm{c}=\mathrm{rbinom}(\mathrm{I}, 1,0.5)$,
acc. 0 <- runif $(1,0.9,0.9)$,
scale. $0<-\operatorname{runif}(1,5,5)$,
acc. 1 <- runif $(1,0.9,0.9)$,
scale. 1 <- runif $(1,5,5)$,
theta. $0=$ runif $(J, 0.9,0.9)$,
theta.1=runif $(J, 0.9,0.9)) \quad\}$
anno <- bugs(data, inits, parameters,
"c:/carp/devguard/sandbox/hierAnno/trunk/R/bugs/beta-binomial-anno.bug",
n.chains=3, n.iter=500, n.thin=5,
bugs.directory="c: <br>WinBUGS<br>WinBUGS14")

## Simulated Data

## Simulation Study

- Simulate data (with reasonable model settings)
- Test sampler's ability to fit
- Parameters
- 20 annotators, 1000 items
- $50 \%$ missing annotations at random
- prevalence $\pi=0.2$
- specificity prior $\left(\alpha_{0}, \beta_{0}\right)=(40,8)(83 \%$ accurate, medium var)
- sensitivity prior $\left(\alpha_{1}, \beta_{1}\right)=(20,8)$ (72\% accurate, high var)


## Simulated Sensitivities / Specificities

- Crosshairs at prior mean
- Realistic simulation compared to (estimated) real data



## Prevalence Estimate

- Simulated with $\pi=0.2$
- sample mean $c_{i}$ was 0.21
- Estimand of interest in epidemiology (or sentiment)



## Sensitivity / Specificity Estimates



- Posterior mean and $95 \%$ intervals
- Diagonal is perfect estimation
- More uncertainty for sensitivity (more data w. $\pi=0.2$ )


## Sens / Spec Hyperprior Estimates

Posterior samples $\alpha^{(n)}, \beta^{(n)}$; cross-hairs at known vals.


- Note skew to high scale (low variance)
- Estimates match sampled means


## Real Data

## 5 Dentists Diagnosing Caries

| Dentists | Count | Dentists | Count | Dentists | Count |
| :---: | ---: | :---: | ---: | :---: | ---: |
| 00000 | 1880 | 10000 | 22 | 00001 | 789 |
| 10001 | 26 | 00010 | 43 | 10010 | 6 |
| 00011 | 75 | 10011 | 14 | 00100 | 23 |
| 10100 | 1 | 00101 | 63 | 10101 | 20 |
| 00110 | 8 | 10110 | 2 | 00111 | 22 |
| 10111 | 17 | 01000 | 188 | 11000 | 2 |
| 01001 | 191 | 11001 | 20 | 01010 | 17 |
| 11010 | 6 | 01011 | 67 | 11011 | 27 |
| 01100 | 15 | 11100 | 3 | 01101 | 85 |
| 11101 | 72 | 01110 | 8 | 11110 | 1 |
| 01111 | 56 | 11111 | 100 |  |  |

## Estimands of Interest

- $\pi$ : Prevalence of caries
- $c_{i}$ : 1 if patient $i$ has caries; 0 otherwise
- $\theta_{1, j}$ : Sensitivity of dentist $j \quad[\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})]$
- $\theta_{0, j}$ : Specificity of dentist $j \quad[\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})]$
- can compute precision [ TP/(TP+FP)]
- precision + recall (sensitivity) not complete [no FN]
- task difficulty - priors on $\theta$ predict new annotators
- item difficulty


## Posteriors for Dentist Accuracies

- In beta-binomial by annotator model


Annotator Sensitivities


- Posterior density vs. point estimates (e.g. mean)


## Posteriors for Dentistry Data Items



Accounts for bias, so very different from simple vote!

## Marginal Evaluation

- Common eval in epidemiology
- Models without sensitivity/specificity by annotator underdispersed

| Positive |  | Posterior Quantiles |  |  |
| ---: | ---: | ---: | ---: | ---: |
| Tests | Frequency | .025 | .5 | .975 |
| 0 | 1880 | 1818 | 1877 | 1935 |
| 1 | 1065 | 1029 | 1068 | 1117 |
| 2 | 404 | 385 | 408 | 434 |
| 3 | 247 | 206 | 227 | 248 |
| 4 | 173 | 175 | 193 | 212 |
| 5 | 100 | 80 | 93 | 109 |

## Textual Entailment Data

- Collected by Snow et al. using Mechnical Turk
- Recreates a popular linguistic data set (Dagan et al.'s RTE-1)
- Text: Microsoft was established in Italy in 1985. Hypothesis: Microsoft was established in 1985.
- Binary responses true/false
- "Gold Standard" was pretty bad


## Estimated vs. "Gold" Accuracies



- Diagonal green at chance (below is adversarial)
- blue lines at estimated prior means
- Circle area is items annotated, center at "gold standard" accuracy, lines to estimated accuracy (note pull to prior)


## Annotator Pool Estimates

- Gold-standard balanced (50\% prevalence)
- Posterior 95
- Prevalence (.45,.52)
- Specificity $(.81, .87)$
- Sensitivity (.82,.87)
- Posterior sensitivity $95 \%$
- $39 \%$ of annotators no better than chance
- more than $50 \%$ of annotations from spammers
- has little effect on inference


## Residual Category Errors



- Many residual errors in gold standard, not Turkers


## Modeling Item Difficulty

## Item Difficulty

- Clear that some items easy and some hard
- Assuming all same leads to bad marginal fit
- Hard to estimate even with 10 annotators/item
- Posterior intervals too wide


## Modeling Item Difficulty

- Logistic Item-Response models with shape used in social sciences (e.g. education and voting)
- Use logistic scale (maps $(-\infty, \infty)$ to $[0,1])$
- $\alpha_{j}$ : annotator $j$ 's bias (ideally 0 )
- $\delta_{j}$ : annotator $j$ 's discriminativeness (ideally $\infty$ )
- $\beta_{i}$ : item $i$ 's "location" plus "difficulty"
- $x_{i} \sim \operatorname{logit}^{-1}\left(\delta_{j}\left(\alpha_{i}-\beta_{j}\right)\right)$


## Modeling Item Difficulty (Cont.)

- Place normal (or other) priors on coefficients, e.g. $\beta_{i} \sim \operatorname{Norm}\left(0, \sigma^{2}\right), \quad \sigma^{2} \sim \operatorname{Unif}(0,100)$
- Priors may be estimated as before; leads to pooling of item difficulties.
- Need more than 5-10 coders/item for tight posterior on difficulties
- Model has better $\chi^{2}$ fits, but many more params
- Harder to estimate computationally in BUGS
- Full details and code in paper


## Extensions

## Extending Coding Types

- Multinomial responses (Dirichlet-multinomial)
- Ordinal responses (ordinal logistic model)
- Scalar responses (continuos responses)


## Active Learning

- Choose most useful items to code next
- Typically balancing two criteria
- high uncertainty
- high typicality (how to measure?)
- Can get away with fewer coders/item
- May introduce sampling bias
- Compare supervision for high certainty items
- High precision (for most customers)
- High recall (defense analysts and biologists)


## Code-a-Little, Learn-a-Little

- Semi-automated coding
- System suggests labels
- Coders correct labels
- Much faster coding
- But may introduce bias
- Hugely helpful in practice


## Probabilistic Training and Testing

- Use probabilistic item posteriors for training
- Use probabilistic item posteriors for testing
- Directly with most probabilistic models (e.g. logistic regression, multinomial)
- Or, train/test with posterior samples
- Penalizes overconfidence of estimators (in log loss)
- Demonstrated theoretical effectiveness (Smyth et al.)
- Need to test in practice


## $\underline{\text { Semi-Supervised Models }}$

- Easy to add in supervised cases with Bayesian models
- Gibbs sampling skips sampling for supervised cases
- May go half way by mixing in "gold standard" annotators
- Fixed high, but non-100\% accuracies
- Stronger high accuracy prior


## Multimodal (Mixture) Priors

- Model Mechanical Turk as mixture of spammers and hammers
- This is what the Mechanical Turk data suggests
- May also model covariance of sensitivity/specificity


## Annotator and Item Random Effects

- May add random effects for annotators
- amount of annotator training
- number of items annotated
- annotator native language
- annotator field of expertise
- Also for Items
- difficulty (already discussed)
- type of item being annotated
- frequency of item in a large corpus


## Jointly Estimate Model and Annotations

- Can train a model with inferred (probabilistic) gold standard
- Can use trained model like another annotator
- Raykar, Vikas C., Shipeng Yu, Linda H. Zhao, Anna Jerebko, Charles Florin, Gerardo Hermosillo Valadez, Luca Bogoni, and Linda Moy. 2009. Supervised Learning from Multiple Experts: Whom to trust when everyone lies a bit. In ICML.


## Bayesian $\kappa$ Estimates

- Calculate expected $\kappa$ for two annotators
- Calculate expected $\kappa$ for two new annotators from pool
- Calcluate confidence/posterior uncertainty of $\kappa$
- Could estimate confidence intervals for $\kappa$ w/o model


## The End

- References
- http://lingpipe-blog.com/
- Contact
- carp@alias-i.com
- R/BUGS (Anon) Subversion Repository
svn co https://aliasi.devguard.com/svn/sandbox/hierAnno

