\\ \title{
Learning on the Web
}\\ \title{
Learning on the Web
}

Fernando Pereira

Thanks to
Koby Crammer, Kuzman Ganchev, João Graça, Yi Liu, Marius Pasça, Franz Och, Joseph Reisinger, Deepak
Ravichandran, Stefan Riezler, Partha Talukdar, Ben Taskar, Alexander Vasserman, and other colleagues at Google and University of Pennsylvania. Penn work funded by NSF

Web Inference and Learning

- Building and using the Web requires algorithms that can draw reliable inferences from the wealth of evidence implicit in Web data
- How to interpret this term in this context?
- Does this sentence answer that question?
- Will this user click on that ad?
- Learning: create concise representations to support good inferences

Beyond Supervised Learning

- Explicit annotation is costly and misleading
- Expert annotation: difficult to agree on annotation criteria, repeated failures to achieve self-sustainability:
- User annotation: what's its immediate value to the user, attractive to spammers
- Learning from what users do: we constantly seek and organize information
- Examples: machine translation, query expansion
- Lots of (mostly) unlabeled data

Learning from Parallel

 Data
Statistical Machine Translation

- Inference: is this phrase a good translation of that phrase in this context?
- Indirect evidence: translation pairs, monolingual text
- Memory-based (non-parametric) learning:
- Bilingual: phrase translation table
- Monolingual: language model

Statistical Machine Translation

Machine learning from human communication

- Parallel texts:

SEHR GEEHRTER GAST! KUNST, KULTUR UND KOMFORT IM HERZEN BERLIN.

DIE ÖRTLICHE NETZSPANNUNG BETRÄGT 220/240 VOLT BEI 50 HERTZ.

DEAR GUESTS, ART, CULTURE AND LUXURY IN THE HEART OF BERLIN.

THE LOCAL VOLTAGE IS 220/240 VOLTS 50 HZ .

EN

DE

Building a Translator

- Align (cf. genomic alignments...)

KUNST, KULTUR UND KOMFORT IM HERZEN BERLINS.

ART, CULTURE AND LUXURY IN THE HEART OF BERLIN.

- Extract phrase pairs from alignments
- Model the statistics of the target language
- To translate a source text:
- search over phrase-to-phrase translations
- filter with model of target language

Meaning from Web Search

- Term mismatches between queries and documents in information retrieval
- Query terms and relevant document terms differ
- Query expansion: add search terms known to occur in relevant documents
- Increase recall
- Decrease query term ambiguity

Query Expansion by Translation

- Training
- Align queries and clicked snippets
- Create translation tables
- Train n-gram language model from query logs
- Use
- "Translate" many queries
- Extract and store table of "translated" terms in context

From query to snippets

Ambiguity Resolution

- 5-best phrase-level translations

> (herbs,herbs)(for,for)(chronic,chronic)(heartburn, heartburn) (herbs,herb)(for,for)(chronic,chronic)(heartburn, heartburn) (herbs,remedies)(for,for)(chronic,chronic)(heartburn, heartburn) (herbs,medicine)(for,for)(chronic,chronic)(heartburn, heartburn) (herbs,supplements)(for,for)(chronic,chronic)(heartburn, heartburn)

(herbs,herbs)(for,for)(mexican,mexican)(cooking,cooking) (herbs,herbs)(for,for))(cooking,cooking)(mexican,mexican (herbs,herbs)(for,for)(mexican,mexican)(cooking,food) (mexican,mexican)(herbs,herbs)(for,for)(cooking,cooking) (herbs,spices)(for,for)(mexican,mexican)(cooking,cooking)

Beyond Parallel Corpora

Reading the Web

- Elementary semantic inference
- First step: what are the possible classes for each instance?

Someone Told Us

- Text patterns (Hearst 92,Van Durme \& Pasça 08)

Google
"* such as whistler"
Search
Ady:

Web \oplus Show options....

Whistler and Vail are best American ski resorts for advanced...
Dec 21, 2009 ... Famous ski resorts such as Whistler in Canada and Vail in the US are great for skiers of all abilities as well as snowboarders, ...
www.prlog.org/ 10460282 -whistler-and-vail-are-best-american-ski-resorts-for-advanced-skiers-says-skidirect.html - Cached

Whistler Intemet Cafes

As is the case with many ski resorts such as Whistler, many of the local hotels have computers available to their guests so that they don't need to go to an ...
www.internet-cafe-guide.com/whistler-internet-cafes.html - Cached - Similar
Florida-based group eyes Whistler auction
When it comes to major resorts such as Whistler, observers say there are few potential bidders especially in the current economic environment. ...
ww.calgaryherald.com/story_print.htmiPid=2595550\&sponsor= - Cached
WHISTLER STUDIES Arriving in Europe in 1855 at the age of twenty ...
by J Sandberg - 1968 - Cited by 1 - Related articles
Great artists, such as Whistler, have a rare gift,. "one supreme quality of spirit," which is none other than "the love of beauty for the very beauty's sake ...
www.jstor.org/stable/3048512
John Singer Sargent, "Camation, Lily, Lily, Rose." and the ...
by AL. Helmreich - 2003 - Cited by 2 - Related articles
artists such as Whistler or Clausen who were eager to claim relative autonomy (despite their recourse to alternative professional artists' societies). ...

Informative Co-occurrences

- WebTables (Cafarella et al. 08)
- I54M HTML tables from Web pages
- Cluster instances in table columns

Combining Information Sources

- Bootstrapping:
- Seed set of (instance, class) pairs
- Compute instance similarity from additional sources
- Use similarity to infer new (instance, class) pairs
- Approach: label propagation in a graph
- instance nodes
- cluster/class nodes
- bipartite structure

Label Propagation

\square

Label Propagation

Singer	A8
Bob Dylan (0.95)	
Johnny Cash (0.87)	
Billy Joel (0.82)	

Label Propagation

Singer	A8
Bob Dylan (0.95)	\leftarrow
Johnny Cash (0.87)	
Billy Joel (0.82)	

Label Propagation

wT	Musician
$\rightarrow \mid$	Billy Joel (0.75)
	Johnny Cash (0.73)

Label Propagation

Musician
Billy Joel (0.75)
Johnny Cash (0.73)

\because Extraction Confidence

Label Propagation

Musician
Billy Joel (0.75)
Johnny Cash (0.73)

Singer
Bob Dylan (0.95)
Johnny Cash (0.87)
Billy Joel (0.82)

Label Propagation

Musician
Billy Joel (0.75)
Johnny Cash (0.73)

Singer
Bob Dylan (0.95)
Johnny Cash (0.87)
Billy Joel (0.82)

A8

Extraction Confidence

Classes, Clusters, Instances

Classes, Clusters, Instances

Classes, Clusters, Instances

Initial clusters

Smoothness: Nodes linked by heavy edges tend to have similar labels

Classes, Clusters, Instances

Initial clusters

Smoothness:

Nodes linked by heavy edges tend to have similar labels

Coupling Nodes:

Encourage linked instance nodes to have similar class
labels (smoothness)

Classes, Clusters, Instances

Label Propagation

Iteration 2

Class Assignment for Given Instances

Class Assignment for Given Instances

\square A8

- Propagation
- WebTables

Class Assignment for Given Instances

924k (class, instance) pairs extracted from I00M web documents

ㅁ A8

- Propagation

WebTables

74M (class, instance) pairs extracted from WebTables

Class Assignment for Given Instances

\square A8

- Propagation
- WebTables

Graph with I.4M nodes, 75M edges

Class Assignment for Given Instances

$$
\mathrm{MRR}=\frac{1}{|\operatorname{test-set}|} \sum_{v \in \text { test-set }} \frac{1}{\operatorname{rank}_{v}(\operatorname{class}(v))}
$$

$\square \quad$ A8

- Propagation

WebTables

Graph with I.4M nodes, 75M edges

Class Assignment for Given Instances

$$
\mathrm{MRR}=\frac{1}{\mid \text { test-set } \mid} \sum_{v \in \text { test-set }} \frac{1}{\operatorname{rank}_{v}(\operatorname{class}(v))}
$$

Evaluation against Wordnet excerpt (38 classes, 8910 instances)

Finding More Good Instances

- Instances found solely by label propagation:

Class	Precision at 100 (non-A8 extractions)
Book Publishers	87.36
Federal Agencies	29.89
NFL Players	94.95
Scientific Journals	90.82
Mammal Species	84.27

Scientific Journals	Journal of Physics, Nature, Structural and Molecular Biology, Sciences Sociales et santé, Kidney and Blood Pressure Research, American Journal of Physiology- Cell Physiology
NFL Players	Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron Dixon, Rodney Hannah
Book Publishers	Small Night Shade Books, House of Anansi Press, Highwater Books, Distributed Art Publishers, Copper Canyon Press

Discovering Similar Classes

- Label propagation by-product:

Seed Class	Non-Seed Class Labels Discovered
Book Publishers	small presses, journal publishers, educational pub- lishers, academic publishers, commercial publishers
NFL Players	sports figures, football greats, football players, backs, quarterbacks
Scientific Journals	prestigious journals, peer-reviewed journals, refereed journals, scholarly journals, academic journals

Semantic Constraints for Better Classes

Semantic Constraints for Better Classes

Semantic Constraints for Better Classes

Experiments with Public Sources

- Make Talukdar et al. results easy to reproduce and extend
- Freebase: multiple-sourced relational tables
- Pantel et al. 09 gold-standard hypernyms
- TextRunner (U. of Washington): hypernyms from open-domain extraction
- YAGO (Suchanek et al., 07): entityattribute knowledge base curated from Wikipedia and Wordnet

Better Classes with YAGO Attributes

Better Classes with YAGO Attributes

Better Classes with YAGO Attributes

Better Classes with YAGO Attributes

Better Classes with YAGO Attributes

Better Classes with YAGO Attributes

Classes for Attributes

- Qualitative evidence that attribute nodes propagate the right information

YAGO Attribute	Top-2 WordNet Classes Assigned by MAD (example instances for each class are shown in brackets)
has_currency	wordnet_country_108544813 (Burma, Afghanistan) wordnet_region_108630039 (Aosta Valley, Southern Flinders Ranges)
works_at	wordnet_scientist_110560637 (Aage Niels Bohr, Adi Shamir) wordnet_person_100007846 (Catherine Cornelius, Jamie White)
has_capital	wordnet_state_108654360 (Agusan del Norte, Bali) wordnet_region_108630039 (Aosta Valley, Southern Flinders Ranges)
born_in	wordnet_boxer_109870208 (George Chuvalo, Fernando Montiel) wordnet_chancellor_109906986 (Godon Brown, Bill Bryson)
has_isbn	wordnet_book_106410904 (Past Imperfect, Berlin Diary) wordnet_magazine_106595351 (Railway Age, Investors Chronicle)

Propagation Objective

- MAD [Talukdar \& Crammer 09] (simplified)
$\arg \min _{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1}\left[\left\|\boldsymbol{S} \hat{\boldsymbol{Y}}_{l}-\boldsymbol{S} \boldsymbol{Y}_{l}\right\|^{2}+\mu_{1} \sum_{u, v} \boldsymbol{M}_{u v}\left(\hat{\boldsymbol{Y}}_{u l}-\hat{\boldsymbol{Y}}_{v l}\right)^{2}+\mu_{2}\left\|\hat{\boldsymbol{Y}}_{l}-\boldsymbol{R}_{l}\right\|^{2}\right]$
- m labels, +1 dummy label
- $\boldsymbol{M}=\boldsymbol{W}^{\top}+\boldsymbol{W}$ is the symmetrized weight matrix
- $\hat{\boldsymbol{Y}}_{v l}$: weight of label l on node v
- $\boldsymbol{Y}_{v l}$: seed weight for label l on node v
- \boldsymbol{S} : diagonal matrix, nonzero for seed nodes
- $\boldsymbol{R}_{v l}$: regularization target for label l on node v

A Propagation Algorithm

Inputs $\boldsymbol{Y}, \boldsymbol{R}:|V| \times(|L|+1), \boldsymbol{W}:|V| \times|V|, \boldsymbol{S}:|V| \times|V|$ diagonal
$\hat{\boldsymbol{Y}} \leftarrow \boldsymbol{Y}$
$\boldsymbol{M}=\boldsymbol{W}+\boldsymbol{W}^{\top}$
$Z_{v} \leftarrow \boldsymbol{S}_{v v}+\mu_{1} \sum_{u \neq v} \boldsymbol{M}_{v u}+\mu_{2} \quad \forall v \in V$
repeat
for all $v \in V$ do

$$
\hat{\boldsymbol{Y}}_{v} \leftarrow \frac{1}{Z_{v}}\left((\boldsymbol{S} \boldsymbol{Y})_{v}+\mu_{1} \boldsymbol{M}_{v} \cdot \hat{\boldsymbol{Y}}+\mu_{2} \boldsymbol{R}_{v}\right)
$$

end for
until convergence

- Some details of the construction of the input matrices omitted for simplicity
- Converges under reasonable assumptions
- Many variants, alternative objectives (Subramanya and Bilmes 2008)

Good News

- Label propagation can combine multiple information sources effectively
- Useful coverage of class-instance relations, much bigger than in previous work
- Embarrassingly parallel algorithms
- Graph representation can encode a variety of useful constraints

Limitations

- Can't express "few classes per instance"
- How to classify instances in context?

Whistler paintings vs Whistler skiers

- Propagation is additive, averaging
- Algorithmically nice (convexity, convergence)
- But it can't "push back" to express incompatibilities between classes
\Rightarrow artist \supset painter $\not \subset$ ski-resort

Few Classes Per Instance

- If a classification is to be informative, it must have limited ambiguity
- Posterior regularization: constrain the ambiguity of final labeling
- POS tagging pilot (Graça et al. 09): motivated by this work, but easier to test
- Penalize the ℓ_{1} / ℓ_{∞} norm of the posterior distribution of classes given instances

Contextual Classification

- Graph-based approach:
- One node per mention (lots of nodes!)
- Link mention nodes that have similar contexts
- Language modeling approach:
- Class labels are also terms
- Model probability of class given context
- Find most likely class for each mention given its context

Back to Supervised Learning

- Where do edge weights come from?
- These experiments: heuristic scoring functions drawn from language modeling and information retrieval
- Can we learn edge scoring functions?
- Minkov \& Cohen: learning from random walks
- McCallum's group: learning factor potentials by M-H sampling
- Learn from user feedback (Talukdar et al., SIGMOD 20I0)

Summary

- First steps in inferring broad-coverage semantic relationships from the actions of Web users:
- What they write
- How they interact with search results
- Multiple correlated sources provide a wealth of indirect supervision
- (Some) graph-based algorithms scale up
- Related work:
- Wang \& Cohen's SEAL and follow-ups
- Weikum lab’s SOFIE

Current Work

- Web-scale contextual semantic annotation
- is-a, co-reference
- Combining multiple relationships
- The distinct senses of "Whistler" belong to disjoint co-reference classes
- Probabilistic interpretations
- Relational factor graphs
- Non-parametric Bayesian models

